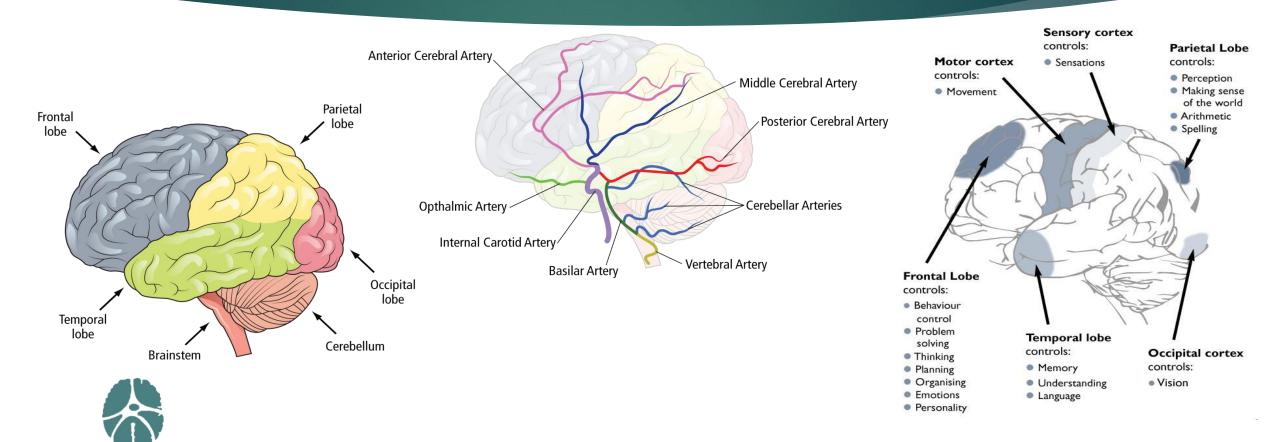
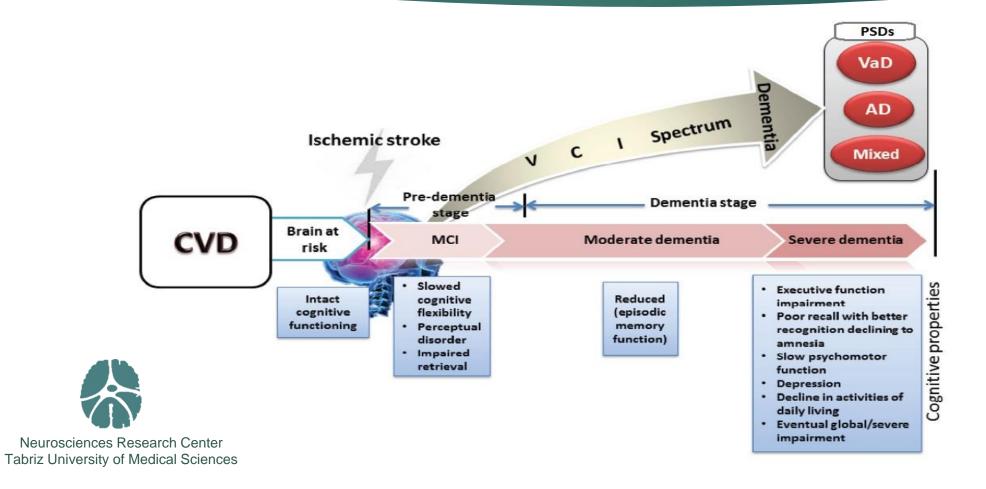

Cognitive Rehabilitation Devices in Ischemic Stroke Therapy

Saeed Sadigh-Eteghad, M.Phil., Ph.D.

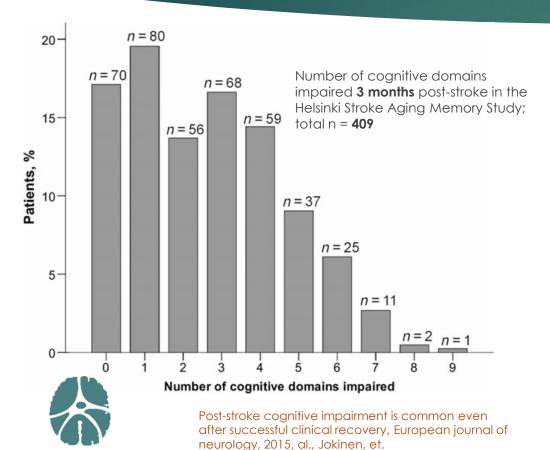
Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran




Brain Anatomy & Cognitive Impairments

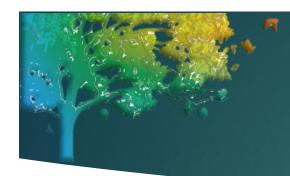
Neurosciences Research Center Tabriz University of Medical Sciences

Vascular Cognitive Impairment Progress



Stroke & Cognitive Impairments

- Up to two-thirds of stroke survivors have a cognitive deficit after the stroke.
- Approximately one-third of those develop dementia.
- Only 16 to 20% of stroke survivors with cognitive impairment improve.


Cognitive Impairment Rate

	n (%)				
Cognitive domain	All patients $n = 409$	Patients with $mRS = 0-1$ $n = 152$			
Memory functions	227 (60)	77 (52)			
Visuoconstructional and spatial functions	216 (55)	54 (36)			
Executive functions and attention	181 (49)	52 (34)			
Aphasia	114 (29)	23 (15)			
Reading and writing	112 (30)	16 (11)			
Abstract reasoning	106 (29)	26 (17)			
Arithmetic	71 (20)	12 (8)			
Neglect	29 (8)	2(1)			
Agnosia	13 (3)	1 (1)			

Frequencies of impairment in each cognitive domain in the whole cohort and in a subgroup of patients with **excellent clinical recovery (mRS = 0–1)** 3 months after ischemic stroke in the Helsinki Stroke Aging Memory Study

Neurosciences Research Center Tabriz University of Medical Sciences

The Nature of Cognitive Impairment Post Stroke

Attention

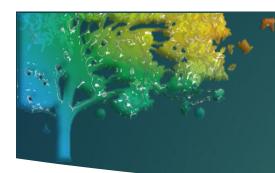
• Focus attention, sustained attention, selective attention, divided attention

Memory

 Visual memory, auditory memory, working memory, eispodic memory, semantic memory, working memory, procedural memory

Executive Function

 Initiation, processing speed, problem solving, planning

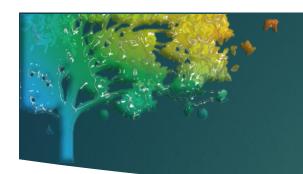

Perception, praxis

• Visuo-spatial, visuo-perceptual, Unilateral neglect, inattention, apraxia, agnosia, prosopagnosia

Language

 Aphasia: Broca's, Wernicke's, transcortical motor/sensory or mixed, conductive, global

Assessment of Cognitive Impairment Post Stroke

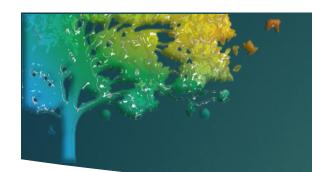

- Mini-Mental Screening Evaluation (MMSE): attention, calculation, recall, language, ability to follow simple commands, orientation
- Montreal Cognitive Assessment (MoCA)
- Clock-Drawing Test (CDT): visuospatial, praxis, attention
- Addenbrooke's cognitive examination (ACE-R): attention, memory, verbal fluency, language and visual-spatial orientation.
- Stroke Impact Scale (SIS): hand function, memory, emotion, mobility, communication and social participation.
- Domain-Specific Neuropsychological Tests
- CANTAB

Cognitive rehabilitation interventions aims

- 1. Reinforce, strengthen or re-establish previously learned patterns of behavior.
- 2. Establish new patterns of cognitive activity through internal compensatory cognitive mechanisms for impaired neurological systems.
- 3. Establish new patterns of activity through **external compensatory mechanism** such as external aids, or environmental structuring and support.
- 4. **Enable persons to adapt** to their cognitive disability.

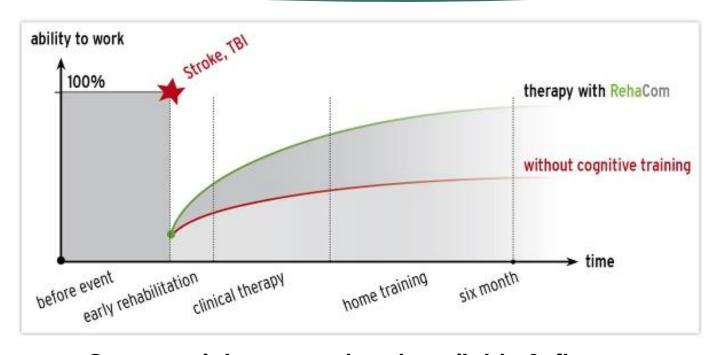
Rehabilitation toolbox

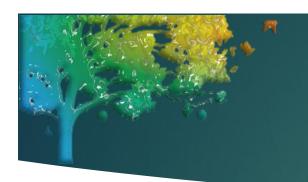
- Pharmacological agents Medical intervention
- Paper and pencil tools
- Mental Imagery
- Software and games
- Virtual reality
- Repetitive transcranial magnetic stimulation (rTMS)
- Transcranial direct-current stimulation (tDCS)
- Neurofeedback
- Acupuncture



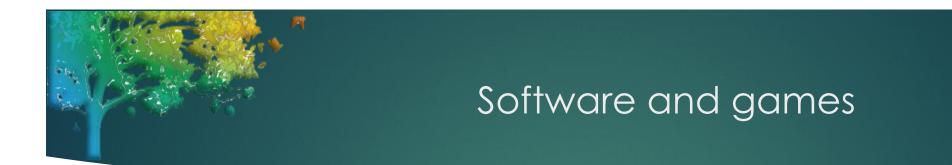
Traditional tools

Novel tools

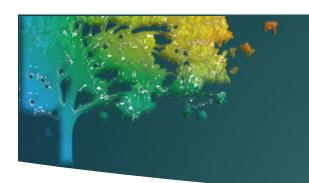


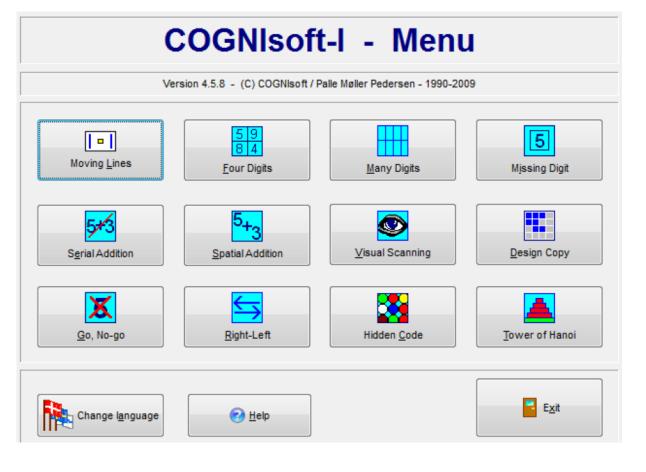




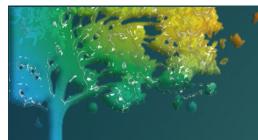


- Problem-solving
- Working memory
- Divided attention
- Flexibility





Targeting the specific areas of attention



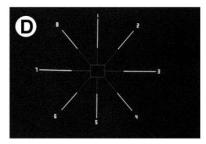
Study-dependent designed software

Software-based Cognitive Rehabilitation

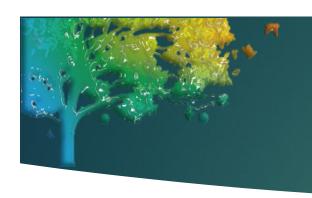
Lin, Z., Tao, J., Gao, Y., Yin, D., Chen, A., and Chen, L. (2014). Analysis of central mechanism of cognitive training on cognitive impairment after stroke: Resting-state functional magnetic resonance imaging study. J. Int. Med. Res. 42, 659–668

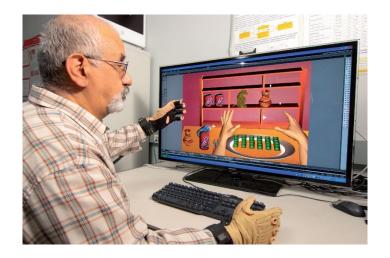
Lin et al.,	Stroke,	N = 34:	RehaCom	1 h, 6 d/w,	Rehab.?	WMS:			
2014	post-acute	IG = 16	software	10 w = 60		Information	- (-	1
	(6–10 m) with	pCG =	package	h (unkn.)		Orientation	-	-	
	EF and memory deficit	18	(EF, memory)			Mental control	-	+	
	mornory delicit		mornory			Logical memory	-	+	
						Digits forward and	-	\pm	
						backward			
						Visual reprod.	-	+	
						Assoc. learning	-	+	
						Memory quotient	_	+	

Software-based Cognitive Rehabilitation

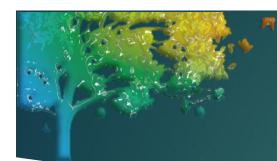

Prokopenko, S. V., Mozheyko, E. Y., Petrova, M. M., Koryagina, T. D., Kaskaeva, D. S., Chernykh, T. V., et al. (2013). Correction of post-stroke cognitive impairments using computer programs. *J. Neurol. Sci.* 325, 148–153.

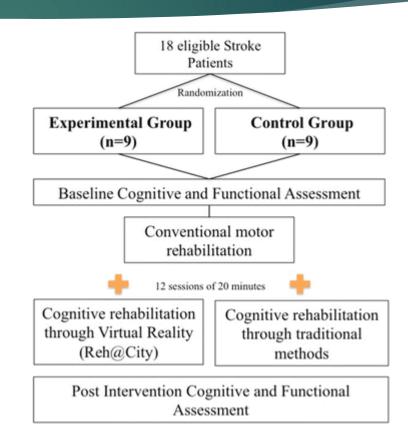
Neuropsychological 30 min, 7 Prokopenko Stroke, N = 43: Rehab. Schulte's tables Clock drawing et al., 2013 IG = 24computer training d/w, 2 w = acute-CAU = (sustained, 15 h (unkn.) post-MMSE acute (<2 19 selective, divided, MoCA w) with and alternating att.) mild cognitive





impairments to mild dementia


Virtual reality




Virtual reality-based Cognitive Rehabilitation

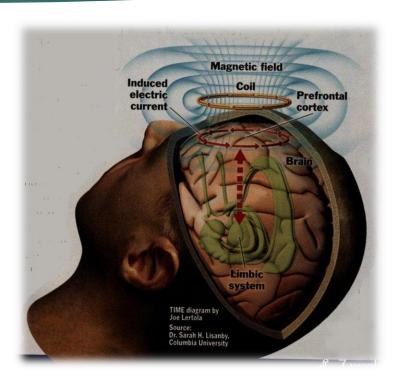
Faria, Andrade, Soares, Badia. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients

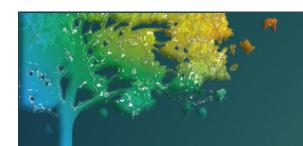
Journal of Neuro Engineering and Rehabilitation (2016) 13:96



Virtual reality-based Cognitive Rehabilitation

	Experimental $(n = 9)$				Control $(n = 9)$					
	Pre	Post	W	p	Pre	Post	W	p	MW	p
ACE-Total	72 (61–75.5)	81 (68–86.5)	44.000	.011	66 (54.5-81)	69 (58–78)	24.000	.398	13.500	.014
MMSE	23 (20.5-26)	29 (25-29)	34.000	.025	23 (20.5–26)	26 (21-26.5)	28.500	.136	18.000	.050
ACE-Attention	15 (14–16.5)	18 (16.5-18)	28.000	.018	14 (12-16.5)	16 (12.5-17)	13.500	.518	17.500	.040
ACE-Memory	15 (13–18)	18 (15–21.5)	28.000	.017	18 (11-19.5)	18 (12.5–21)	11.000	.336	23.000	.136
ACE-Fluency	5 (2.5-6)	6 (4-7.5)	27.000	.196	6 (4–8)	5 (2.5-5.5)	2.500	.027	13.000	.014
ACE-Language	22 (21.5-23)	24 (21-26)	33.500	.191	19 (16-22)	21 (17-24.5)	22.000	.168	32.500	.489
ACE-Visuo-spatial	12 (7.5-14.5)	14 (13–15)	28.000	.017	12 (7.5-13.5)	14 (7-15.5)	16.000	.246	26.500	.222


p <.05 is indicated in bold

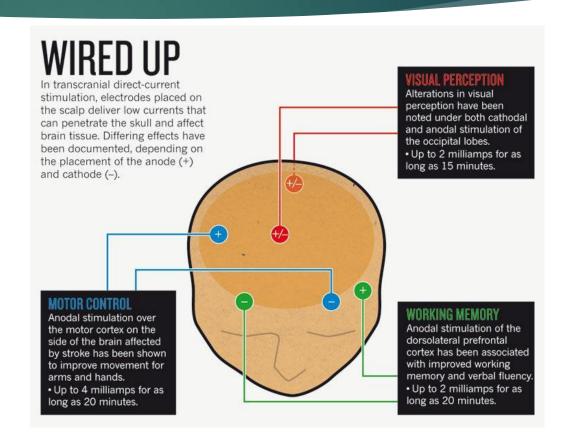


Repetitive transcranial magnetic stimulation (rTMS)

rTMS-based Cognitive Rehabilitation

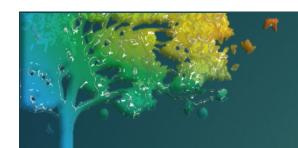
Park and Yoon, The effect of computer-assisted cognitive rehabilitation and repetitive transcranial magnetic stimulation on cognitive function for stroke patients, 2015, J. Phys. Ther. Sci. 27: 773–776.

Material	Intervention -	Before	After	
Material	intervention	Mean±SD	Mean±SD	
K-MMSE	rTMS (n=10)**	17.90 ± 2.470	19.50 ± 2.369	
	Cogrehab (n=10)**	18.00 ± 1.886	20.30 ± 2.058	



Transcranial direct-current stimulation (tDCS)

tDCS-based Cognitive Rehabilitation


Yun, Chun, Kim, The Effects of Transcranial Direct-Current Stimulation on Cognition in Stroke Patients, Journal of Stroke 2015;17(3):354-358.

Left fronto-temporal anode stimulation

current intensity 2 mA, for 30 minutes

A 3-week program

tDCS-based Cognitive Rehabilitation

	Left-FTAS				
	Before	After			
K-MMSE	20.1 ± 4.8	23.9±3.0*			
FDST	4.6 ± 1.4	5.0±1.2			
BDST	2.8±0.9	3.0±0.9*			
FVST	3.3 ± 0.5	3.6±0.8*			
BVST	2.6±1.2	3.3 ± 1.4			
ViLT-R	32.6±17.0	36.7 ± 15.7			
VeLT-R	16.1 ± 11.2	27.6±14.3*			
VCPT (second)	0.5 ± 0.1	0.5 ± 0.1			
ACPT (second)	0.7±0.1	0.6 ± 0.2			
K-MBI	59.0±22.7	68.7±21.2*			

K-MMSE, Korean version of the Mini-Mental State Examination *

FDST, forward digit span test

BDST, backward digit span test *

FVST, forward visual span test *

BVST, backward visual span test

ViLT-R, visual learning test-delayed recall

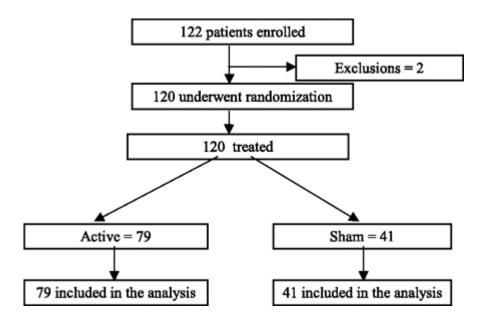
VeLT-R, verbal learning test-delayed recall *

VCPT, visual continuous performance test

ACPT, auditory continuous performance test

K-MBI, Korean version of the modified Barthel Index *

Photo bio-modulation based Cognitive Rehabilitation



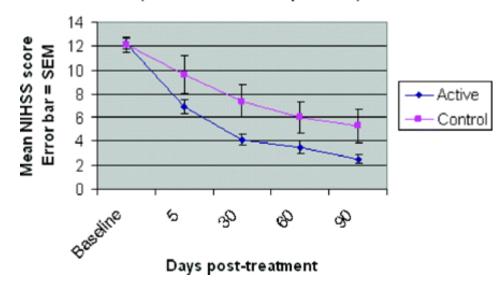
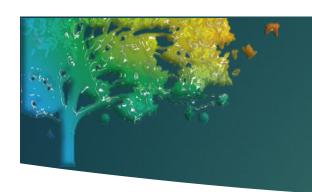
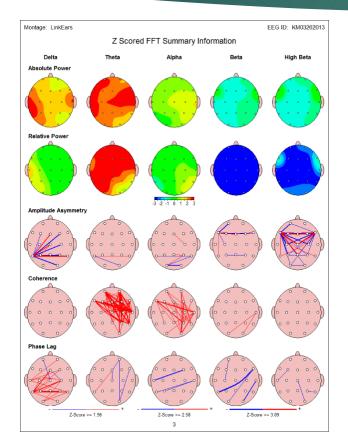
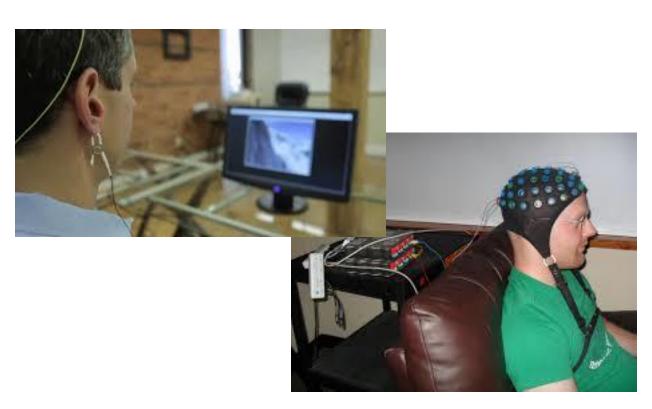


Photo bio-modulation based Cognitive Rehabilitation


Lampl, Yair, et al. "Infrared laser therapy for ischemic stroke: A new treatment strategy." *Stroke*38.6 (2007): 1843-1849.


Mean NIHSS over time (120 Intent-to-treat patients)



Neurofeedback

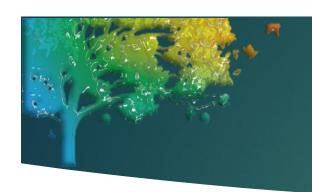
Neurofeedback-based Cognitive Rehabilitation

Cho, Kim, Jung, Effects of neurofeedback and computer-assisted cognitive rehabilitation on relative brain wave ratios and activities of daily living of stroke patients: a randomized control trial, 2016, J. Phys. Ther. Sci. 28: 2154–2158,

FIM	NI	B	CACR			
	pre	post	pre	post		
Motor	58.0 ± 13.1	59.6 ± 13.1**	54.6 ± 18.6	56.9 ± 17.6***		
Cog	24.4 ± 5.2	$25.8 \pm 4.5^{**}$	24.5 ± 5.3	$25.4 \pm 5.2^{***}$		
Tota1	82.4 ± 17.6	85.5 ± 16.2***	79.1 ± 21.8	82.3 ± 21.0***		

Comparison of activities of daily living (ADL) of the groups

NFB: neurofeedback training group,


CACR: computer assisted cognitive rehabilitation training group,

FIM: functional independent measure,


Motor: motor subscale score, Cog: cognition subscale score,

Total: functional independent measure total score.



Acupuncture



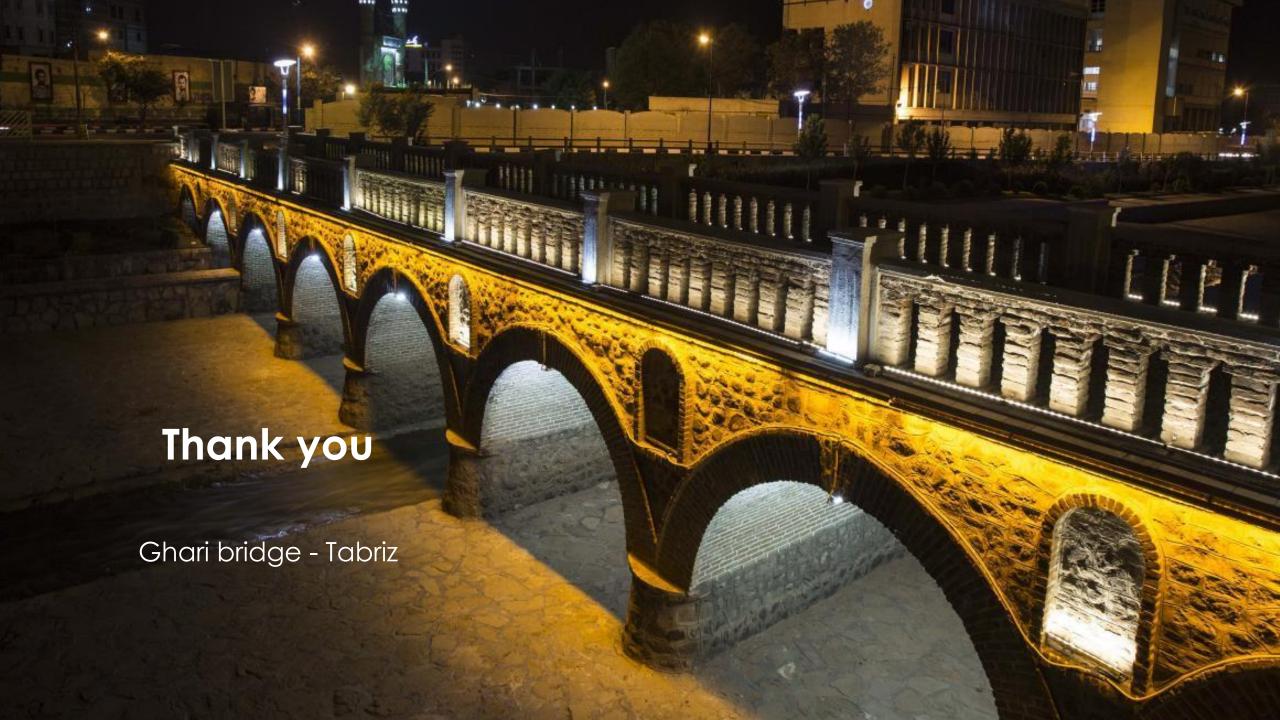
Neurosciences Research Center Tabriz University of Medical Sciences

Acupuncture-based Cognitive Rehabilitation

Dependent Variables	Source of Variation	SS	df	Mean Square	F	P
△ MMSE	Acupuncture	187.334	1	187.334	112,824	.000
	RehaCom	147.750	1	147.750	88.984	.000
	Acup * Reha	10.380	1	10.380	6.251	.013
△ MoCA	Acupuncture	179.662	1	179.662	123.745	.000
	RehaCom	167.951	1	167.951	115.679	.000
	Acup * Reha	7.247	1	7.247	4.991	.027
△ fim	Acupuncture	509.116	1	509.116	61,220	.000
	RehaCom	477.784	1	477.784	57.452	.000
	Acup * Reha	52,537	1	52.537	6.317	.013

Jiang, Yang, Tao, Huang, Li, Ye, Chen, Hong, Chen, Clinical Efficacy of Acupuncture Treatment in Combination With RehaCom Cognitive Training for Improving Cognitive Function in Stroke: A 2 2 Factorial Design Randomized Controlled Trial, JAMDA 17 (2016) 1114e1122

Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Functional Independence Measure (FIM)



Final notes

- •Ischemia severity
- •In period of 1-12 weeks
- •Good cognitive assess tools
- •Using appropriate cognitive rehabilitation tools (computer based techniques are common)

